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Abstract: The Multistep Modified Reduced Differential Transform Method (MMRDTM) is 

proposed and implemented in this study to obtain solutions of hyperbolic partial differential 

equations. We examine at the nonlinear Schrodinger equation (NLSE). Prior to implementing 

the multistep strategy, we switched the nonlinear term in the NLSE with the corresponding 

Adomian polynomials using the proposed technique. As a result, we can acquire solutions for 

the NLSE in a simpler and less difficult manner. Furthermore, the solutions can be estimated 

more precisely over a longer time period. We studied the NLS equation and graphed the 

features of this solution to show the strength and accurateness of the proposed technique. 
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Introduction  

Nonlinear Schrödinger equation equations occur in various fields in which nonlinear waves can 

be studied in fluid-filled viscoelastic tubes, solitary waves in semiconductors (thin plate), 

nonlinear optical waves, hydrodynamics and plasma waves. Coupled nonlinear Schrödinger 

equation is solved by using two approximate analytical methods such as Differential Transform 

Method (DTM) and Reduced Differential Transform Method (RDTM) by (Abazari, 2011). The 

numerical results demonstrate that the RDTM is very effective, convenient and quite accurate 

for nonlinear equation systems. Aruna and Ravi Kanth (2013) studied the approximate solutions 

of non-linear fractional Schrodinger equation by using two- dimensional DTM and Modified 

Differential Transform Method (MDTM). Three numerical tests were done to examine the 

efficacy and precision of the proposed methods. Rao (2016) dealt with RDTM to obtain the 

approximate solution of linear and NLS equations. This technique is better than numerical 

methods as it is error-free and does not involve big memory of the computer. It does not involve 

linearization, perturbation or discretization compared to other current techniques. 

 

In the same year, Taghizadeh and Noori (2016) studied the NLS equation with cubic 

nonlinearity by using RDTM to obtain approximate solution. This approach can effectively be 

used for a wide range of problems. Li et al. (2017) considered a class of nonlinear Riesz space. 

The Multistep Modified Reduced Differential Transform Method (MMRDTM) is proposed and 

implemented in this study to discover solutions to hyperbolic partial differential equations. 

We'll examine at the nonlinear Schrodinger equation (NLSE) fractional Schrodinger equations. 

The semi-discrete and fully discrete systems are built on the basis of the conventional Galerkin 

finite element method in space and Crank-Nicolson difference method in time.  

 

Inc and Korpinar (2017) introduced the residual power series method (RPSM) and homotopy 

analysis transform method (HATM) to obtain solution of Schrödinger equation of power law 

nonlinearity. The results demonstrate that in obtaining solution of the bright optical soliton of 

the NLS equation these methods are very effective and efficient. Hashemi and Akgül (2017) 

obtained analytical solution of NLS equation in both time and space fractional terms. Since 

analytical solutions are known for just a few cases, analyses of the properties of solutions are 

usually carried out numerically using such approaches. However, an analytical model that 

describes the dynamics of pulse propagation in a fiber is often desirable (Seadawy, 2012). 

 

On the other hand, Ray (2013) suggested and implemented a modification to the fractional 

RDTM in order to solve fractional KdV equations. The modification in this strategy comprised 

the substitution of the nonlinear term by related Adomian polynomials. As a result, the solutions 

to the nonlinear problems can be achieved in a more straightforward manner with fewer 

computed terms. As a result, the solutions to the nonlinear problems can be achieved in a more 

straightforward manner with fewer computed terms. Furthermore, El-Zahar (2015) has 

presented an adaptive multistep DTM for solving singular perturbation initial-value problems. 

It generates the solution in a quick convergent series, resulting in the solution converging across 

a wide time range. It generates the solution in a quick convergent series, resulting in the solution 

converging across a wide time range. 

 

Recently, Hussin et al. (2018) introduced and executed the Multistep Modified Reduced 

Differential Transform Method (MMRDTM) for solving nonlinear Schrodinger equations 

(NLSE). The outcomes demonstrate the approximate solutions of NLSE with high accuracy 

were obtained. Hussin et al. (2019a) also solved Klein-Gordon equations using MMRDTM and 

results showed that the MMRDTM is a valid and convenient method for finding analytic 
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approximate solution of the Klein-Gordon equations. Besides that, Hussin et al. (2019b) 

obtained solution of fractional nonlinear Schrodinger equations (FNLSEs) by using 

MMRDTM.  

 

In this study, we combine the modification made in Ray (2013) and the multistep approach in 

El-Zahar (2015) to execute a new technique called Multistep Modified Reduced Differential 

Transform Method (MMRDTM). The proposed method has the advantage of producing an 

analytical approximation in a fast-convergent sequence with fewer computed terms. 

 

Methodology  

 

The Development of Multistep Modified Reduced Differential Transform Method 

Consider the general NLS equation of the form 

 

                                    𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 𝛾|𝑢|2𝑢 = 0,            𝑖 = √−1                              (1)                                           

 

with initial condition  

 

𝑢(𝑥, 0) = 𝑓(𝑥), 
 

where 𝛾 is a constant and 𝑢(𝑥, 𝑡) is a complex function.  

 

Using basic properties of MRDTM and then applying MRDTM to Equation (1), we can obtain 

 

  𝑈𝑘+1,𝑚(𝑥) = (
𝐼

𝑘 + 1
) (

𝜕2

𝜕𝑥2
(𝑈𝑘,𝑚(𝑥)) + 𝛾 ∑ 𝐴𝑘,𝑚

𝑛

𝑘=0

).                            (2) 

 

From the initial condition, write 

 𝑈0(𝑥) = 𝑓(𝑥).                                                                     
 

Consider the general fractional nonlinear Korteweg-de Vries equation of the form (Ray, 2013) 

 

𝑢𝑡 + (𝑢𝑚)𝑥 + (𝑢𝑛)𝑥𝑥𝑥 = 0         𝑚 > 0 ,1 ≤ 𝑛 ≤ 3 , 𝑡 > 0,   0 < 𝛼 ≤ 1,                      (3)  

 

where 𝐾(𝑚, 𝑛) denoted for the different values of 𝑚 and 𝑛 respectively. These 𝐾(𝑚, 𝑛) 

equations have the property that for certain values of 𝑚 and 𝑛, their solitary wave solutions 

have compact support which is known as compactons (Rosenau, P. and Hyman, 1993). 

 

Applying MMRDTM to Eq. (3) and using basic properties of MMRDTM, will obtain  

 

𝑈𝑘+1,𝑖(𝑥) = (
1

k+1
) (−

𝜕

𝜕𝑥
(𝐴𝑘,𝑖(𝑥)) −

𝜕3

𝜕𝑥3
(𝐴𝑘,𝑖(𝑥)))                    (4)  

 

with transformed initial condition 

 

                                                               𝑈0(𝑥) = 𝑓(𝑥).                                                                     (5) 
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Now, write the nonlinear term 

𝑁(𝑢, 𝑡) = ∑ 𝐴𝑛(𝑈0(𝑥), 𝑈1(𝑥), … , 𝑈𝑛(𝑥))𝑡𝑛,                               

∞

𝑛=0

 

where 𝐴𝑛 is the appropriate Adomian’s polynomials. Recently, a novel method for calculating 

the Adomian polynomials was proposed by Kataria, K. K. and Vellaisamy (2016), namely 

𝐴0 = 𝑁(𝑈0(𝑥)) 

𝐴𝑛(𝑈0(𝑥), 𝑈1(𝑥), … , 𝑈𝑛(𝑥)) =
1

2𝜋
∫ 𝑁 (∑ 𝑈𝑘(𝑥)𝑒𝑖𝑘𝑥

𝑛

𝑘=0

)
𝜋

−𝜋

𝑒−𝑖𝑛𝜆 𝑑𝜆,     𝑛 ≥ 1           

Replacing equation (5) into equation (4) and through iterative calculation, the 𝑈𝑘(𝑥) values can 

be obtained. Furthermore, the set of values {𝑈𝑘(𝑥)}𝑘=0
𝑛  of the inverse transformation gives the 

n-terms approximate solution as follows 

 

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘

𝐾

𝑘=0

,                              𝑡 ∈ [0, 𝑇]. 

 

Suppose that the interval [0, 𝑇] is divided into 𝑀 subintervals [𝑡𝑖−1, 𝑡𝑖], 𝑖 = 1,2, … , 𝑀, of equal 

step size ℎ =
𝑇

𝑀
, by using the nodes 𝑡𝑖 = 𝑖ℎ. The key ideas of the MMRDTM are as follows. 

First, apply the modified RDTM over the interval [0, 𝑡1] to the initial value problem.  From 

there, the approximate result  

𝑢1(𝑥, 𝑡) = ∑ 𝑈𝑘,1(𝑥)𝑡𝑘,                

𝐾

𝑘=0

𝑡 ∈ [0, 𝑡1] 

 

is obtained by using the initial conditions 𝑢(𝑥, 0) = 𝑓0(𝑥), 𝑢1(𝑥, 0) =  𝑓1(𝑥). For 𝑖 ≥ 2, use 

the initial conditions 𝑢𝑖(𝑥, 𝑡𝑖−1) = 𝑢𝑖−1(𝑥, 𝑡𝑖−1), (𝜕 𝜕𝑡⁄ )𝑢𝑖(𝑥, 𝑡𝑖−1) at each subinterval 
[𝑡𝑖−1, 𝑡𝑖], and the MRDTM is applied to the initial value problem over the interval [𝑡𝑖−1, 𝑡𝑖], 
where 𝑡0 is replaced by 𝑡𝑖−1. Next multistep scheme for repeating process 𝑢(𝑥, 0) =
𝑓0(𝑥), 𝑢1(𝑥, 0) =  𝑎. 
 

The process is continued and repeated to create a sequence of approximate solutions 

𝑢𝑖(𝑥, 𝑡), 𝑖 = 1,2, … , 𝑀, for the solution 𝑢(𝑥, 𝑡) such as 

 

𝑢𝑖(𝑥, 𝑡) = ∑ 𝑈𝑘,𝑖(𝑥)(𝑡 − 𝑡𝑖−1)𝑘,                

𝐾

𝑘=0

𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖]. 

 

In fact, the MMRDTM assumes the following solution: 

 

𝑢(𝑥, 𝑡) = {

𝑢1(𝑥, 𝑡) 𝑡 ∈ [0, 𝑡1]

𝑢2(𝑥, 𝑡)
⋮   

𝑡 ∈ [𝑡1, 𝑡2]
⋮

𝑢𝑀(𝑥, 𝑡) 𝑡 ∈ [𝑡𝑀−1, 𝑡𝑀]

. 
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The new algorithm, MMRDTM, is simple in term of computational performance for all values 

of ℎ. It is easily observed that if the step size ℎ = 𝑇, then the MMRDTM reduces to the modified 

RDTM.  

 

Finding  

 

Example 1 

Consider the one-dimensional NLS equation with zero trapping potential (Kanth and Aruna, 

2009), 

 

 𝑖𝑢𝑡 = −
1

2
𝑢𝑥𝑥 − |𝑢|2𝑢        , 𝑡 ≥ 0                                      (6) 

subject to the initial condition 

 

𝑢(𝑥, 0) = 𝑒𝑖𝑥. 
 

The exact solution of this equation is 𝑒𝑖(𝑥+
𝑡

2
)
.  

 

𝑈𝑘+1,𝑚(𝑥) = (
𝐼

𝑘 + 1
) (

1

2
.

𝜕2

𝜕𝑥2
(𝑚(𝑥)) + ∑ 𝐴𝑘,𝑚

𝑛

𝑘=0

),                             (7) 

 

will be obtained by applying MRDTM to Equation (6) and using basic properties of MRDTM. 

From initial condition, write 

 

𝑈0(𝑥) = 𝑒𝑖𝑥.                                                                          (8) 

 

Replacing Equation (8) into Equation (7) and through iterative calculation, the 𝑈𝑘(𝑥) values 

can be obtained. Next, we list several set of values {𝑈6(𝑥)}𝑘=0
6  of the inverse transformations 

gives the 6-terms approximate solution as follows, 

 

𝑢1(𝑥, 𝑡) = 𝑒𝐼𝑥 +
1

2
 𝐼𝑒𝐼𝑥𝑡 −

1

8
 𝑒𝐼𝑥𝑡2 −

1

48
 𝐼𝑒𝐼𝑥𝑡3 + 0.002604166667 𝑒𝐼𝑥𝑡4 

 

+0.000260416668 𝐼𝑒𝐼𝑥𝑡5 − 0.000021701388 𝑒𝐼𝑥𝑡6,    𝑡 ∈ [0,0.1]. 
 

𝑢2(𝑥, 𝑡) = 0.9987502604𝑒𝐼𝑥 +  0.04997916927 𝐼𝑒𝐼𝑥

+ (−0.02498958463 +  0.4993751301 𝐼)𝑒𝐼𝑥(𝑡 − 0.1)
+ (−0.1248437825 − 0.00624739615 𝐼) 𝑒𝐼𝑥(𝑡 − 0.1)2

+ (0.001041232697 − 0.02080729713 𝐼)𝑒𝐼𝑥(𝑡 − 0.1)3

+ (0.002600912125 + 0.00013015409 𝐼) 𝑒𝐼𝑥(𝑡 − 0.1)4

+ (−0.0000130154094 + 0.00026009121 𝐼)𝑒𝐼𝑥(𝑡 − 0.1)5

+ (−0.0000216742663 − 0.0000010846176 𝐼 )𝑒𝐼𝑥(𝑡 − 0.1)6,    𝑡
∈ [0.1,0.2]. 
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𝑢3(𝑥, 𝑡) = 0.9950041653𝑒𝐼𝑥 +  0.09983341664 𝐼𝑒𝐼𝑥

+ (−0.04991670837 +  0.4975020827 𝐼)𝑒𝐼𝑥(𝑡 − 0.2)
+ (−0.1243755206 − 0.01247917714 𝐼) 𝑒𝐼𝑥(𝑡 − 0.2)2

+ (0.002079862866 − 0.02072925333 𝐼)𝑒𝐼𝑥(𝑡 − 0.2)3

+ (0.002591156672 + 0.0002599828592 𝐼) 𝑒𝐼𝑥(𝑡 − 0.2)4

+ (−0.0000259982877 + 0.0002591156794 𝐼)𝑒𝐼𝑥(𝑡 − 0.2)5

+ (−0.00002159297977 − 0.000002166525309 𝐼 )𝑒𝐼𝑥(𝑡 − 0.2)6,    𝑡
∈ [0.2,0.3]. 

 

By using the nodes 𝑡𝑚 = 𝑚ℎ, divide the interval [ 0,2 ] into 20 subintervals [𝑡𝑚−1, 𝑡𝑚], 𝑚 =
1,2, … ,20, equally sized with ℎ = 0.1.  

 

 

Figure 1 :  Exact solution of Real Part  

 

Figure 2 :  Exact solution of Imaginary 

Part  

 

Figure 3 : MMRDTM of Real Part  

 

Figure 4 : MMRDTM of Imaginary Part  
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Figure 5 :MRDTM of Real Part Figure 6 : MRDTM of Imaginary Part 

 

Figure 1 and Figure 2 show the exact solutions, Figure 3 and Figure 4 show graphs of 

approximate solution MMRDTM while Figure 5 and Figure 6 show graphs of approximate 

solution MRDTM for 𝑡 ∈ [0,2] and 𝑥 ∈ [0,1] which involve real part and imaginary part. The 

shape of MMRDTM graphs look exactly similar to exact solutions. It is therefore obvious that 

the obtained solutions of MMRDTM for this form of NLS equation has minor error. The 

performance error analyses obtained by MMRDTM at 𝑥 = 1 are summarized in Table 1 for 

real part. As we can see, the solution of MMRDTM is close to the exact solution. 

 

Table 1 : Comparison solution of MMRDTM and MRDTM   

t Exact Solution MMRDTM MRDTM 

0.1 0.4975710479
+ 0.8674232256 ∗ 𝐼 

0.4975710479
+ 0.8674232256 ∗ 𝐼 

0.4975710479
+ 0.8674232256 ∗ 𝐼 

0.2 0.4535961214
+ 0.8912073601 ∗ 𝐼 

0.4535961215
+ 0.8912073601 ∗ 𝐼 

0.4535961215
+ 0.8912073600 ∗ 𝐼 

0.3 0.4084874409
+ 0.9127639403 ∗ 𝐼 

0.4084874410
+ 0.9127639403 ∗ 𝐼 

0.4084874407
+ 0.9127639405 ∗ 𝐼 

0.4 0.3623577545
+ 0.9320390860 ∗ 𝐼 

0.3623577546
+ 0.9320390860 ∗ 𝐼 

0.3623577524
+ 0.9320390873 ∗ 𝐼 

0.5 0.3153223624
+ 0.9489846194 ∗ 𝐼 

0.3153223624
+ 0.9489846195 ∗ 𝐼 

0.3153223520
+ 0.9489846256 ∗ 𝐼 

0.6 0.2674988286
+ 0.9635581854 ∗ 𝐼 

0.2674988286
+ 0.9635581855 ∗ 𝐼 

0.2674987912
+ 0.9635582079 ∗ 𝐼 

0.7 0.2190066871
+ 0.9757233578 ∗ 𝐼 

0.2190066871
+ 0.9757233579 ∗ 𝐼 

0.2190065768
+ 0.9757234222 ∗ 𝐼 

0.8 0.1699671429
+ 0.9854497300 ∗ 𝐼 

0.1699671428
+ 0.9854497301 ∗ 𝐼 

0.1699668613
+ 0.9854498915 ∗ 𝐼 

0.9 0.1205027694
+ 0.9927129910 ∗ 𝐼 

0.1205027694
+ 0.9927129911 ∗ 𝐼 

0.1205021247
+ 0.9927133550 ∗ 𝐼 

1.0 0.07073720167
+ 0.9974949866 ∗ 𝐼 

0.707372016𝑒 − 1
+ 0.9974949867 ∗ 𝐼 

0.7073584964𝑒 − 1
+ 0.9974957403 ∗ 𝐼 

1.1 0.02079482780
+ 0.9997837642 ∗ 𝐼 

0.207948278𝑒 − 1
+ 0.9997837643 ∗ 𝐼 

0.2079218486𝑒 − 1
+ 0.9997852148 ∗ 𝐼 

1.2 −0.0291995223
+ 0.9995736030 ∗ 𝐼 

−0.291995223𝑒 − 1
+ 0.9995736031 ∗ 𝐼 

−0.2920439705𝑒 − 1
+ 0.9995762399 ∗ 𝐼 

1.3 −0.07912088881
+ 0.9968650285 ∗ 𝐼 

−0.791208887𝑒 − 1
+ 0.9968650286 ∗ 𝐼 

−0.7912945048𝑒 − 1
+ 0.9968695911 ∗ 𝐼 
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1.4 −0.1288444943
+ 0.9916648105 ∗ 𝐼 

−0.1288444944
+ 0.9916648105 ∗ 𝐼 

−0.1288589193
+ 0.9916723831 ∗ 𝐼 

1.5 −0.1782460556
+ 0.9839859469 ∗ 𝐼 

−0.1782460556
+ 0.9839859470 ∗ 𝐼 

−0.1782695018
+ 0.9839980694 ∗ 𝐼 

1.6 −0.2272020947
+ 0.9738476309 ∗ 𝐼 

−0.2272020948
+ 0.9738476311 ∗ 𝐼 

−0.2272390315
+ 0.9738664383 ∗ 𝐼 

1.7 −0.2755902468
+ 0.9612752030 ∗ 𝐼 

−0.2755902470
+ 0.9612752031 ∗ 𝐼 

−0.2756468585
+ 0.9613035860 ∗ 𝐼 

1.8 −0.3232895669
+ 0.9463000877 ∗ 𝐼 

−0.3232895671
+ 0.9463000878 ∗ 𝐼 

−0.3233742479
+ 0.9463418863 ∗ 𝐼 

1.9 −0.3701808314
+ 0.9289597150 ∗ 𝐼 

−0.3701808317
+ 0.9289597151 ∗ 𝐼 

−0.3703047767
+ 0.9290199402 ∗ 𝐼 

2.0 −0.4161468365
+ 0.9092974268 ∗ 𝐼 

−0.4161468370
+ 0.9092974269 ∗ 𝐼 

−0.4163247500
+ 0.9093825149 ∗ 𝐼 

 

Conclusion  

In this study, a new approximate analytical method known as MMRDTM is developed and 

implemented to obtain solution of one-dimensional nonlinear Schrodinger equations. The 

modification in this new strategy required replacing the nonlinear term with its Adomian 

polynomials and adopting a multistep approach. The results, as well as the graphical 

representations, demonstrated that the approximate NLSE solutions were achieved with great 

accuracy. The results as well as the graphical representations, demonstrated that the 

approximate NLSE solutions were achieved with great accuracy. Finally, we can state that the 

MMRDTM is reliable and efficient in providing analytic approximate solutions for this type of 

equation. Computation in this paper had been carried out by using Maple 13. 
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